- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Alper, Jarod (3)
-
Halpern-Leistner, Daniel (3)
-
Blum, Harold (2)
-
Xu, Chenyang (2)
-
Hall, Jack (1)
-
Rydh, David (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We give a variant of Artin algebraization along closed subschemes and closed substacks. Our main application is the existence of étale, smooth, or syntomic neighborhoods of closed subschemes and closed substacks. In particular, we prove local structure theorems for stacks and their derived counterparts and the existence of henselizations along linearly fundamental closed substacks. These results establish the existence of Ferrand pushouts, which answers positively a question of Temkin-Tyomkin.more » « less
-
Alper, Jarod; Blum, Harold; Halpern-Leistner, Daniel; Xu, Chenyang (, Inventiones mathematicae)
-
Alper, Jarod; Blum, Harold; Halpern-Leistner, Daniel; Xu, Chenyang (, Inventiones mathematicae)null (Ed.)We prove that K-polystable log Fano pairs have reductive automorphism groups. In fact, we deduce this statement by establishing more general results concerning the S-completeness and Θ-reductivity of the moduli of K-semistable log Fano pairs. Assuming the conjecture that K-semistability is an open condition, we prove that the Artin stack parametrizing K-semistable Fano varieties admits a separated good moduli space.more » « less
An official website of the United States government

Full Text Available